Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

نویسندگان

  • Jaewoo Jeong
  • Yari Ferrante
  • Sergey V. Faleev
  • Mahesh G. Samant
  • Claudia Felser
  • Stuart S. P. Parkin
چکیده

Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance

In the present work we suggest a recipe for finding tetragonal Heusler compounds with perpendicular magnetic anisotropy (PMA) that also exhibit large tunneling magnetoresistance (TMR) when used as electrodes in magnetic tunnel junction devices with suitable tunneling barrier materials. We performed density-functional theory calculations for 286 Heusler compounds and identified 116 stable tetrag...

متن کامل

Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias.

Rational material design can accelerate the discovery of materials with improved functionalities. This approach can be implemented in Heusler compounds with tunable magnetic sublattices to demonstrate unprecedented magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant ex...

متن کامل

Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-ampl...

متن کامل

Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

Mn3Ge has a tetragonal Heusler-like D022 crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn3Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch betwe...

متن کامل

Unconventional GMR angular dependence using a compensated ferrimagnet

We have designed a GdCo/Cu/NiFe Giant Magnetoresistance (GMR) trilayer, the magnetoresistance of which does not always depend on the angle between the magnetisations of the electrodes. Using a GdCo ferrimagnetic alloy close to compensation, it was possible to experimentally reach the spin flop field Bsf of the ferrimagnetic layer. Below Bsf , the ferrimagnetic layer behaves as a ferromagnetic l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016